Saturday, September 21, 2019

Strategic management of stochastic power losses in smart transmission grids

CITATION
Koloushani, S. M., Nasri, M., & Rezaei, M. M. (2019). Strategic management of stochastic power losses in smart transmission grids. International Transactions on Electrical Energy Systems, 29(8), e12032-n/a. doi:10.1002/2050-7038.12032

For library access / research help in a similar topic: anyangoceline19@gmail.com


ABSTRACT
This paper contributes to the development of a smart wide‐area controller for
the management of stochastic power losses in smart transmission grids while
power system reliability is met. A comprehensive strategic management model
is used for designing a smart grid management strategy. The proposed widearea
control algorithm enables continuous communication and control,
allowing suppliers to optimize active power losses based on price preference
and system technical issues. Wide‐area control variables are continuously controlled
by solving an optimization problem with an active intent to minimize
power losses. A gravitational search algorithm (GSA) is presented to solve
the optimization problem. In this paper, the wide‐area control system is
combined with local controllers and a hybrid controller is proposed. Proposed
algorithms are tested on the standard Institute of Electrical and Electronics
Engineers (IEEE) 9‐bus and IEEE 118‐bus test systems. Because of the stochastic
behavior of the power system, various and random contingencies are considered.
Simulation results demonstrate the efficiency of the hybrid algorithm


REFERENCES
1. Salehi V, Mohamed A, Mazloomzadeh A, Mohammed OA. Laboratory‐based smart power system, Part I: design and system development.
IEEE Trans Smart Grid. 2012;3(3):1394‐1404.

2. Salehi V, Mohamed A, Mazloomzadeh A, Mohammed OA. Laboratory‐based smart power system, Part II: control, monitoring, and
protection. IEEE Trans Smart Grid. 2012;3(3):1405‐1417.

3. Salehi, V., Mohamed, A., and Mohammed, O. A., “Implementation of Real‐Time Optimal Power Flow Management System on Hybrid
AC/DC Smart Microgrid,” in Industry Applications Society Annual Meeting (IAS), 2012 IEEE, 2012, pp. 1–8.

4. David FR. Strategic Management: Concepts and Cases. 13th ed. New Jersey: Pearson: Prentice Hall; 2011.

5. Tang, G. Q., “Smart grid management & visualization: Smart power management system,” in Emerging Technologies for a Smarter World
(CEWIT), 2011 8th International Conference & Expo on, 2011, pp. 1–6.

6. Chen H, Xuan P, Wang Y, Tan K, Jin X. Key technologies for integration of multitype renewable energy sources—research on multitimeframe
robust scheduling/dispatch. IEEE Trans Smart Grid. 2016;7(1):471‐480.

7. Xiang Y, Liu J, Liu Y. Robust energy management of microgrid with uncertain renewable generation and load. IEEE Trans Smart Grid.
2016;7(2):1034‐1043.

8. Mohammadi MB, Hooshmand R‐A, Fesharaki FH. A new approach for optimal placement of PMUs and their required communication
infrastructure in order to minimize the cost of the WAMS. IEEE Trans Smart Grid. 2016;7(1):84‐93.

9. Karlsson D, Hemmingsson M, Lindahl S. Wide area system monitoring and control‐terminology, phenomena, and solution implementation
strategies. Power Energy Mag IEEE. 2004;2(5):68‐76.

10. Menike, S., Yahampath, P., Rajapakse, A., and Alfa, A., “Queuing‐theoretic modeling of a PMU communication network,” in 2013 IEEE
Power & Energy Society General Meeting, 2013, pp. 1–5.

11. Mohagheghi S, Venayagamoorthy GK, Harley RG. Optimal wide area controller and state predictor for a power system. Power Syst IEEE
Trans. 2007;22(2):693‐705.

12. Abido MA, Ahmed MW. Multi‐objective optimal power flow considering the system transient stability. IET Gener Transm Distrib.
2016;10(16):4213‐4221.

13. Liang J, Venayagamoorthy GK, Harley RG. Wide‐area measurement based dynamic stochastic optimal power flow control for smart grids
with high variability and uncertainty. Smart Grid, IEEE Trans. 2012;3(1):59‐69.

14. Niknam T, Narimani MR, Aghaei J, Azizipanah‐Abarghooee R. Improved particle swarm optimisation for multi‐objective optimal power
flow considering the cost, loss, emission and voltage stability index. IET Gener Transm Distrib. 2012;6(6):515‐527.

15. Amjady N, Fatemi H, Zareipour H. Solution of optimal power flow subject to security constraints by a new improved bacterial foraging
method. IEEE Trans Power Syst. 2012;27(3):1311‐1323.

16. Wu QH, Cao YJ, Wen JY. Optimal reactive power dispatch using an adaptive genetic algorithm. Int J Electr Power Energy Syst.
1998;20(8):563‐569.

17. Esmin AAA, Lambert‐Torres G, de Souza ACZ. A hybrid particle swarm optimization applied to
loss power minimization. IEEE Trans
Power Syst. 2005;20(2):859‐866.

18. Devaraj D. Improved genetic algorithm for multi‐objective reactive power dispatch problem. Eur T Electr Power. 2007;17(6):569‐581.

19. Dai C, Chen W, Zhu Y, Zhang X. Seeker optimization algorithm for optimal reactive power dispatch. IEEE Trans Power Syst.
2009;24(3):1218‐1231.

20. El Ela AAA, Abido MA, Spea SR. Differential evolution algorithm for optimal reactive power dispatch. Electr Pow Syst Res.
2011;81(2):458‐464.

21. Mota‐Palomino R, Quintana VH. Sparse reactive power scheduling by a penalty function‐linear programming technique. IEEE Trans
Power Syst. 1986;1(3):31‐39.

22. Sachdeva SS, Billinton R. Optimum network VAR planning by nonlinear programming. IEEE Trans Power Appar Syst. 1973;4:1217‐1225.

23. Lu F‐C, Hsu Y‐Y. Reactive power/voltage control in a distribution substation using dynamic programming. IEE Proc Gener Transm
Distrib. 1995;142(6):639‐645.

24. Bjelogrlic M, Calovic MS, Ristanovic P, Babic BS. Application of Newton's optimal power flow in voltage/reactive power control. IEEE
Trans Power Syst. 1990;5(4):1447‐1454.

25. Quintana VH, Santos‐Nieto M. Reactive‐power dispatch by successive quadratic programming. IEEE Trans Energy Convers.
1989;4(3):425‐435.

26. Yan W, Yu J, Yu DC, Bhattarai K. A new optimal reactive power flow model in rectangular form and its solution by predictor corrector
primal dual interior point method. IEEE Trans Power Syst. 2006;21(1):61‐67.

27. Aoki K, Fan M, Nishikori A. Optimal VAR planning by approximation method for recursive mixed‐integer linear programming. IEEE
Trans Power Syst. 1988;3(4):1741‐1747.

28. Deeb N, Shahidehpour SM. Linear reactive power optimization in a large power network using the decomposition approach. IEEE Trans
Power Syst. 1990;5(2):428‐438.

29. Zhang W, Liu Y. Multi‐objective reactive power and voltage control based on fuzzy optimization strategy and fuzzy adaptive particle
swarm. Int J Electr Power Energy Syst. 2008;30(9):525‐532.

30. Abido MA. Multiobjective evolutionary algorithms for electric power dispatch problem. IEEE Trans Evol Comput. 2006;10(3):315‐329.

31. Mahadevan K, Kannan PS. Comprehensive learning particle swarm optimization for reactive power dispatch. Appl Soft Comput.
2010;10(2):641‐652.

32. Niknam T, Narimani MR, Azizipanah‐Abarghooee R, Bahmani‐Firouzi B. Multiobjective optimal reactive power dispatch and voltage
control: a new opposition‐based self‐adaptive modified gravitational search algorithm. IEEE Syst J. 2013;7(4):742‐753.

33. Ye C‐J, Huang M‐X. Multi‐objective optimal power flow considering transient stability based on parallel NSGA‐II. IEEE Trans Power Syst.
2015;30(2):857‐866.

34. Mandal B, Roy PK. Optimal reactive power dispatch using quasi‐oppositional teaching learning based optimization. Int J Electr Power
Energy Syst. 2013;53:123‐134.

35. Qin W, Song J, Han X, Wang P. Operational reliability assessment of power systems based on bus voltage. Gener Transm Distrib IET.
2015;9(5):475‐482.

36. Qin, W., Zhang, W., Wang, P., and Han, X., “Power System Reliability Based on Voltage Weakest Bus Identification,” in Power and Energy
Society General Meeting, 2011 IEEE, 2011, pp. 1–6.

37. Deepa, S. N. and Rizwana, J., “Power system stability by reducing power losses using optimization techniques,” in Computational Intelligence
and Computing Research (ICCIC), 2013 IEEE International Conference on, 2013, pp. 1–4.

38. Mukherjee A, Mukherjee V. Solution of optimal reactive power dispatch by chaotic krill herd algorithm. Gener Transm Distrib IET.
2015;9(15):2351‐2362.

39. Duman S, Sonmez Y, Guvenc U, Yorukeren N. Optimal reactive power dispatch using a gravitational search algorithm. Gener Transm
Distrib IET. 2012;6(6):563‐576.

40. De M, Goswami SK. Optimal reactive power procurement with voltage stability consideration in deregulated power system. Power Syst
IEEE Trans. 2014;29(5):2078‐2086.

41. De M, Goswami SK. Reactive power cost allocation by power tracing based method. Energ Conver Manage. 2012;64:43‐51.

42. Rashedi E, Nezamabadi‐Pour H, Saryazdi S. GSA: a gravitational search algorithm. Inf Sci (Ny). 2009;179(13):2232‐2248.

43. Sabri, N. M., Puteh, M., and Mahmood, M. R., “An overview of Gravitational Search Algorithm utilization in optimization problems,” in
System Engineering and Technology (ICSET), 2013 IEEE 3rd International Conference on, 2013, pp. 61–66.

44. Bhattacharya A, Roy PK. Solution of multi‐objective optimal power flow using gravitational search algorithm. IET Gener Transm Distrib.
2012;6(8):751‐763.

45. Nadakuditi G, Sharma V, Naresh R. Application of non‐dominated sorting gravitational search algorithm with disruption operator for
stochastic multiobjective short term hydrothermal scheduling. IET Gener Transm Distrib. 2016;10(4):862‐872.

46. Yang Z, Zhong H, Xia Q, Kang C. Solving OPF using linear approximations: fundamental analysis and numerical demonstration. IET
Gener Transm Distrib. 2017;11(17):4115‐4125.

47. Yang Z, Zhong H, Bose A, Zheng T, Xia Q, Kang C. A linearized OPF model with reactive power and voltage magnitude: a pathway to
improve the mw‐only DC OPF. IEEE Trans Power Syst. 2018;33(2):1734‐1745.

No comments:

Post a Comment

The Slaughtered and the Survivors: Collaboration Between Social Economy Organizations as a Key to Success in Times of Financial Crisis

CITATION López-Arceiz, F., Bellostas, A., & Rivera-Torres, M. (2017). The Slaughtered and the Survivors: Collaboration Between Social ...